

Обзорная статья Открытый достуг

Научная декларация об актуальности глобальных геоэкологических систем для выживания человечества в эпоху космопланетарных и климатических изменений

Александр Трофимов

Международный научно-исследовательский институт космопланетной антропоэкологии, Новосибирск, Россия

Абстрактный

По данным некоторых геофизиков, с конца XX века полный вектор магнитного поля Земли постепенно ослабевает. Соответственно снижаются буферные свойства магнитосферы Земли, защищающие биосистемы от избыточных солнечных протонно-электронных пучков. С помощью смоделированного ослабления геомагнитного поля нам предстояло ответить на вопрос: каковы возможные биотропные последствия гелиофизического прессинга для дальнейшего развития человечества? Нашей главной целью была разработка в этих условиях профилактических немедицинских технологий. Достоверные различия (Р<0,05) между добровольцами экспериментальной и контрольной групп по динамике электрических, психофизиологических и других показателей в сочетании с соответствующими генетическими маркерами (гены D4, B1, TNF) и интенсивностью гелиофизических факторов на разных этапах показан онтогенез испытуемых и их родителей.

Открыт феномен «гелиофизической экспрессии генов», проявляющийся при моделировании кратковременной длительной геомагнитной депривации. Показано, что наши новые технологические средства, такие как отраженные голограммы и питьевая вода, обладают гелиогеропротекторными свойствами и способствуют значительной положительной инверсии функциональной зависимости активности и скорости старения многих функциональных систем человека от гелиогеофизических воздействий, возрастающей при геомагнитная депривация. Обоснована необходимость создания глобальной системы геоэкологического жизнеобеспечения человека в условиях распространения гелиогеофизических

История публикации:

Поступила: 6 мая 2016 г. Принята: 8 октября 2016 г. Опубликована: 10 октября 2016 г.

Ключевые слова:

Геоэкологические системы, Магнитное поле, Гелиофизика, Изменения климата

Введение

Магнитное поле Земли и его чрезвычайно важная роль в поддержании и эволюции жизни на нашей планете в конце 1900-х годов.

– в начале 2000-х годов стал основным объектом научного внимания коллектива Международного института космической антропоэкологии (Россия, Новосибирск) как Наблюдателя, ответственного за Будущее, с позиции сильного антропного принципа Картера – Циолковского [5].

Во Всемирной научной ассоциации продолжается анализ вековых вариаций геомагнитного поля (ГМП). Одна из аналитических схем представлена в работе Ron Chaar et al. [3], в которых видна отчетливая тенденция ослабления геомагнитной индукции с X века до современного периода.

Обсуждаются геофизические данные о многочисленных рывках и экскурсах ГМП, сопровождающихся значительным снижением интенсивности [6, 7, 1, 2, 8, 3], например, при экскурсах Лашампа, когда она падала почти на 10 раз [9]. Это обсуждение продолжается.

Обсуждается также вопрос о возможной связи магнитных инверсий с ходом биологической эволюции [10, 11, 12, 4]. С уменьшением интенсивности ГМП буферные свойства магнитосферы снижаются. Она перестает должным образом защищать биосферу от космического излучения: усиленные потоки космических лучей начинают проникать в атмосферу и вызывать прогрессивный рост числа вторичных ионизированных частиц, образующих так называемые «широкие атмосферные ливни», достигающие биосферы.

Повышенные уровни радиации у поверхности Земли в периоды геомагнитных экскурсий могут вызывать многочисленные генетические изменения в биосистемах, приводящие к значимым эволюционным последствиям [13, 14, 15]. При этом мутагенное жесткое излучение вспышек сверхновых звезд рассматривается некоторыми авторами как необходимое условие эволюции; экскурсии GMF могут привести к мутациям регуляторных генов.

Российские геофизики Н.Д. Кузнецова и В.В. Кузнецов (2012) в своих работах представили на обсуждение сравнительную хроноэволюционно-аналитическую оценку возможной зависимости генетических мутаций разных типов от разнообразных геомагнитных инверсий [4] (табл. 1).

В условиях продолжающегося снижения интенсивности ГМП биогеофизическое изучение его возможных функционально-генетических, эволюционных последствий для современного человека и поиск эффективных средств профилактики представляются особенно актуальными. Это основной мотив и цель исследования.

Цели

Задача 1. Изучить динамику связи психофизиологических показателей человека с геном В1, длиной аллелей гена D4 и гелиогеофизической ситуацией на разных этапах онтогенеза организмов добровольцев при моделировании многократного ослабления тотального вектора геомагнитная индукция и трансформация ее наклона.

Задача 2. Разработать и апробировать средства немедикаментозной профилактики избыточных гелиомагнитотропных реакций человека на основе информационных голограмм (Патент РФ № 2239860) и питьевой воды, подвергнутой воздействию ослабленного геомагнитного поля (Патент РФ № 2342149).

*Соответствующий автор:проф. Александр Трофимов, Международный научноисследовательский институт космопланетной антропоэкологии, Новосибирск, Россия; Электронная почта:isrica2@rambler.ru

Цитата:Трофимов A (2016) Научная декларация об актуальности глобальных геоэкологических систем для выживания человечества в эпоху космопланетарных и климатических изменений. Int J Earth Environ Sci 1: 119. doi:http://dx.doi. org/10.15344/ijees/2016/119

Авторские права:© 2016 Трофимов. Это статья с открытым доступом, распространяемая на условиях лицензии Creative Commons Attribution License, которая разрешает неограниченное использование, распространение и воспроизведение на любом носителе при условии указания первоначального автора и источника.

Экскурсии и инверсии, млн лет назад	События в эволюции человека, млн лет назад
0,033 – Озеро Моно а	0,03 – исчезновение неандертальцев
0,041 – Лашамп а	0,042 – мутация гена FOXP2 0,037 – мутация гена микроцефалина с
0,070 – Норвежско-Гренландское море а	0,070 - разделение предкового населения на три расы (по мтДНК) d
0,120 – Блейк а	0,1 – возраст общего предка современного человека (по Y-хромосоме) е
0,211 – Ямайка – Водопад Прингл	0,23 – возраст общего предка современного человека (по данным мтДНК) е
0,56 – 0,58 – Большая потеря 0,67 – Этап 17 а 0,78 – Матуяма – Брюнес 0,797 – предшественник Брюнеса а	660 000±140 000 – разделение линий человека и неандертальца (по мтДНК) f
0,78 - Матуяма – Брюнес h	0,8 – возраст предка человека по
бета-глобин г	
1,95 – 1,79 – Олдувай и	1,8 – внешний вид <i>человек прямоходящий</i> дж
2,6 – Гаусс – Матуяма к	2,4±0,3 –мутация, обеспечивающая увеличение объема мозга у представителей линии Homo l. 2,8 – мутация, инактивирующая ген, кодирующий выработку сахарозы на поверхности клетки.

Таблица 1: Экскурсии, инверсии ГМП и события в эволюции человека.

Дизайн исследования

При решении задачи1 ИСРИЦА совместно с лабораторией гелиоклиматопатологии Научного центра клинической и экспериментальной медицины СО РАМН были использованы оригинальные защитные установки конструкции Ю.А. Зайцева (патент РФ № 2012175 от 30.04.1994 г.) с более чем 500-кратное ослабление геомагнитной индукции для исследования [15]. При решении 2-й задачи малые установки типа «ТРОДР» ослабляют ГМП более чем в 100 раз (авторы: А.В. Трофимов, Г.И. Дружинин, 2011) [16, 15], применяя для воздействия на них питьевую воду с целью придания ей Созданы и испытаны гелиомагнитозащитные свойства, передаваемые человеку (патент РФ № 2342149 от 27.12.2008).

Схема работ на 1-м этапе исследования (2002-2005 гг.), проведенного «двойным слепым» методом, предусматривала 3-месячный курс из 10 еженедельных занятий по 50 минут для испытуемых мужского пола в возрасте 18-20 лет (n = 39) в экранирующей (1) и преобразующей (2) установках ГМП. На 2-м этапе (2001-2012 гг.) при решении задачи 2 исследовались добровольцы того же возраста (n = 24) в режиме их тестирования: в период солнечного затмения 22 июля 2009 г., когда произошло перераспределение потоков солнечных и галактических протонов, достигающих окрестностей Земли. Гемодинамические параметры у испытуемых измерялись дважды: до и после приема в различные фазы затмения по 150 мл гелиомагнитозащитной питьевой воды, приготовленной в портативной установке «ТРОДР», которую в дальнейшем

На этапе 2002-2005 годов был применен тест генотипирования по длине аллелей гена дофаминового рецептора D4, а также генов В1 и TNF методами PCP с праймерами, фланкирующими полиморфные участки ДНК (совместный фрагмент работы с Институтом терапии СО РАМН и Институтом цитологии и генетики СО РАН, проводимой под руководством нынешнего академика М. И. Воеводы).

До, в середине и после курса теста компьютерная регистрация электроэнцефалографических, электро-, светопсихофизиологических, гемодинамических и газоразрядных визуализаций.

параметров добровольцев, а также оценку программой «Гелиос» (Свидетельство о государственной регистрации в РФ № 970125 от 24.03.1997 г.) космических условий в период внутриутробного развития испытуемых, так называемый «феномен гелиогеофизического импринтинга», во многом определяющего оценку здоровья человека в его постнатальном развитии [17].

Математическая обработка данных спутникового мониторинга (спутники «Goes» NACA, США) космических корпускулярных протонно-электронных потоков и многомерного корреляционного анализа по программе «Дерево решений» (Институт математики СО РАН, Бериков, 2002) (2) были использованы.

Результаты и обсуждение

Выявлены особенности распределения электрических потенциалов головного мозга добровольцев в условиях повторной кратковременной геомагнитной депривации; отмечено значительное повышение активности в диапазоне альфа-ритма (3) и показано, что гелиогеофизическая матрица, импринтированная на разных этапах пренатального развития испытуемых, при ослаблении геомагнитной индукции оказывается активируемой и более востребован.

Отмечено раскрытие функциональных резервов мозга: улучшение памяти, концентрации внимания, развитие интеллектуальных способностей, в частности, абстрагироваться от привычных ассоциаций. К концу курса моделируемой геомагнитной депривации была выявлена выраженная значимая прямая зависимость уровня психических процессов от интенсивности потоков солнечных электронов и нейтронов, а также значимая обратная связь с величиной потоков солнечных протонов. .

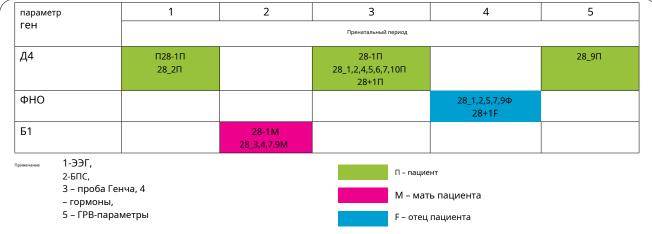
Высшая нервная деятельность реализуется через большое количество нейромедиаторных систем головного мозга, играющих важную роль в психомоторных и когнитивных функциях, нарушающихся при многофакторных заболеваниях и состояниях с наследственной предрасположенностью, таких как болезнь Паркинсона, шизофрения, токсикомания и другие. Среди генов, участвующих в формировании нейрохимических реакций человека, особое внимание исследователи уделяют гену В1 и гену дофаминовых рецепторов D4, аллельные варианты которых содержат вариабельное количество (от 2 до 10) несовершенных повторов ДНК в 3-м экзоне.

Страница 3 из 5

Исследование показало, что добровольцы – носители коротких и длинных аллелей гена D4 по-разному реагируют на геомагнитную депривацию [18], проявляя неодинаковую чувствительность генетического субстрата человека к градиентам магнитного поля Земли.

С использованием значимых моделей, выявленных по данным ковариационного анализа (2), показано, что реакции на геомагнитную депривацию зависят от структурно-функциональных особенностей генетического материала (различной длины аллелей гена D4, а также генов В1 и ФНО). По этим данным можно предположить, что с ослаблением ГМП происходит усиление генетического контроля над интеллектуальными резервами мозга не только нейрофизиологическими, сердечнососудистыми, гормональными и т. д., но и космофизически зависимым, сохраняемым в нескольких родственных поколениях (табл. 2).

Это явление мы назвали открытым впервые как феномен «гелиофизической экспрессии» генов [19], показав, что активация ранее «спящих» генов сопровождается понижением порогов чувствительности человеческого организма к слабой информации. сигналы космогонического содержания, имеющие важное эволюционное значение [12].


Так, после нескольких сеансов геомагнитной депривации при предъявлении испытуемым информационно-голографических сигналов (патент РФ № 2239860 от 10.11.2004 г.)) было отмечено значительное влияние экспрессии гена на спектр параметров ЭЭГ. (табл. 3) и значимое влияние длины аллеля гена D4 в сочетании с пренатально импринтированными гелиофизическими воздействиями на параметры магниточувствительности, электропроводности человека.

TP (акупунктурные точки), светопоглощение кожи, параметры реографии головного мозга и на интеллект, память и творческие способности (табл. 4).

Позднее, в исследованиях 2005-2007 гг. [19] мы отметили и другие возможные последствия перераспределения солнечно-функциональных зависимостей в условиях ослабления ГМП: с использованием того же

№ Связанные параметры космические лучи 1 ген В1 интеллект электроны 2 ген В1 Память нейтроны 3 цифровой тест нейтроны 4 М-тест (электропроводность ТR) творческая работа протоны (Пр>1 кэВ), (Пр>10 кэВ) 5 М-тест (электропроводность ТR) Память нейтроны 6 оперативная память творческая работа электроны 7 М-тест (пульс, ПД) протоны (Пр>1 кэВ), (Пр>10 кэВ)				
2 ген В1 Память нейтроны 3 цифровой тест нейтроны 4 М-тест (электропроводность ТR) творческая работа кэВ), (Пр>10 кэВ) 5 М-тест (электропроводность ТR) Память нейтроны 6 оперативная память творческая работа лектроны электроны (Пр>1 7 М-тест (пульс, ПД) протоны (Пр>1	Nº	Связанные параметры	Космические лучи	
3 цифровой тест нейтроны 4 М-тест (электропроводность ТR) творческая работа кэВ), (Пр>10 кэВ) 5 М-тест (электропроводность ТR) Память нейтроны 6 оперативная память творческая работа электроны 7 М-тест (пульс, ПД) протоны (Пр>1	1	ген В1	интеллект	электроны
4 М-тест (электропроводность ТR) творческая работа кэВ) , (Пр>10 кэВ) 5 М-тест (электропроводность ТR) Память нейтроны 6 оперативная память творческая работа должитроны электроны (Пр>1 7 М-тест (пульс, ПД) протоны (Пр>1	2	ген В1	Память	нейтроны
(электропроводность ТR) кэВ) , (Пр>10 кэВ) 5 М-тест (электропроводность ТR) Память нейтроны 6 оперативная память творческая работа электроны 7 М-тест (пульс, ПД) протоны (Пр>1	3		цифровой тест	нейтроны
(электропроводность TR) 6 оперативная память творческая работа электроны 7 М-тест (пульс, ПД) протоны (Пр>1	4		творческая работа	
7 М-тест (пульс, ПД) протоны (Пр>1	5		Память	нейтроны
л тест (пулде) третельт (пр. т	6	оперативная память	творческая работа	электроны
	7	М-тест (пульс, ПД)		
8 реографический указатель альфа-частицы	8	реографический указатель		альфа-частицы
9 Поглощение света протоны (Pr>1 кэВ), (Пр>30 МэВ)	9	Поглощение света		
10 переносимость физических нагрузок нейтроны	10	переносимость физических нагрузок		нейтроны

Таблица 4: Особенности ковариационной зависимости генофенотипических признаков, психофизиологических параметров человека и космофизической среды (по данным Берикова В.Б., 2002).

Примечания: 1-электроэнцефалография (ЭЭГ), 2- систолическое артериальное давление (САД), 3- проба Генча, 4-гормоны, 5- газоразрядная визуализация (ГРВ), 28_1,2...28+1: периоды внутриутробные. разработка.

Таблица 2. Влияние «гелиопрозрачности» на генетически обусловленную динамику физиологических параметров в условиях модельного предформирования геомагнитного поля (ослабление ГМП в пренатальном онтогенезе. (по Максимову В.Н. и др., 2002) .

_										
Дата тип нагрузки			Амплитуда				Частота			
			дельта	тета	альфа	бета	дельта	тета	альфа	бета
	12-13.11.	контроль	-	-	-	-	-	-	-	-
	2002 г.	Голограмма 1	-	О2, Чехия	-	-	Чехия	-	-	-
		Голограмма 2	T4	F3, T3, Чз	-	T3	-	Т3, О1, Чехия	-	-
	4-5.12.	контрольная голограмма	-	-	-	-	-	-	-	-
	2002 г.	голограмма 1	-	T3	Чехия	T4	T3	Т3, Т4, О2, Цз	-	-

Таблица 3: Изменения спектра параметров ЭЭГ при длительной геомагнитной депривации в зависимости от длины аллелей гена D4 у здоровых испытуемых (по Девицину Д.В.,2002).

Страница 4 из 5

скрининговой установке показано, что после кратковременной геомагнитной депривации (*in vitro*) образцов крови добровольцев (здоровых и больных гипертонией) выявлены значимые ассоциации гемореологических и гелиогеофизических показателей, повышающие риск сердечно-сосудистых катастроф [20].

Результаты 1-го этапа исследований сделали еще более актуальным поиск таких нелекарственных средств, которые обеспечили бы защиту биосферы, человека и всей цивилизации в условиях усиливающегося натиска галактических и солнечно-корпускулярных потоков с ослабление защитного магнитосферного покрова. К сожалению, до недавнего времени столь эффективных средств не существовало.

Перспективной для этой цели оказалась разработка в 2008 году гелиомагнитозащитного средства на основе воды (патент РФ № 2342149). Питьевая вода, обработанная в ослабленном геомагнитном поле, оказалась способна защитить водные структуры организма человека, а, следовательно, и все его функциональные системы в периоды солнечно-магнитосферных возмущений.

Первые испытания гелиозащитной воды были проведены в период экстремальной гелиогеофизической ситуации - во время одного из солнечных затмений 2009 года, при котором в целом увеличивается составляющая галактических космических лучей и уменьшается поток солнечных протонов, отраженных Луной. Корпускулярные потоки, перераспределяемые Луной, в дальнейшем достигают магнитосферно-ионосферного слоя защитной оболочки нашей планеты, где, как правило, их энергия значительно снижается.

Показано, что достоверная (Р<0,05) прямая зависимость тонуса сосудов человека, оцениваемого по величине диастолического артериального давления, от потока электронов и протонов различной энергии, возникающая в период после затмения (3-й замер, табл. 5), при приеме небольшого количества гелиопротекторной питьевой воды уже через 20-30 минут положительно трансформируется. У добровольцев, потреблявших воду, выявлена достоверная (Р<0,05 для протонов с энергией выше 100 мВ) обратная корреляция диастолического артериального давления с корпускулярными потоками высоких энергий (4-й замер, табл. 5).

Недавние исследования, проведенные на Крайнем Севере в режиме тестирования здоровых испытуемых [21] и добровольцев с артериальной гипертензией, у которых выражена их согласие пройти (двойным «слепым» методом) 2-3-недельные курсы с использованием контрольной и геомагнитно-депривированной питьевой воды подтвердило наши первые наблюдения [16, 17]. Гелиозащитная вода способна обеспечить длительную и эффективную защиту функциональных систем организма человека в периоды солнечно-магнитосферных возмущений.

Заключение

В условиях смоделированного ослабления геомагнитного поля более чем в 500 раз выявлен феномен «гелиофизической экспрессии генов»: значимые ассоциации параметров, отражающих функциональную активность мозга, состояние психофизиологических, интеллектуальных и творческих процессов. с генетическими маркерами (гены В1 и D4) и гелиофизической ситуацией в пре- и постнатальном онтогенезе испытуемых.

Экспрессия гелиофизических генов, проявляющаяся при длительной кратковременной геомагнитной депривации человека, способствует снижению порога его чувствительности к информационно-голографическим сигналам космогонического содержания, связанным с динамикой электрофизиологических параметров и длиной аллелей гена D4.

Рывки и вековые отклонения геомагнитного поля, сопровождающиеся ослаблением его индукции и усилением доступа в биосферу солнечногалактических корпускулярных потоков, повышающих меру открытости биологических систем, могут иметь эволюционные последствия для человека.

Разработано и успешно апробировано нелекарственное средство на основе питьевой воды, обработанной в ослабленном геомагнитном поле, которое снижает избыточные гелиомагнитотропные реакции человека и способствует профилактике кризисных состояний (на примере больных гипертонической болезнью).

Научно обоснована необходимость геоэкологического жизнеобеспечения на Земле и Космосе в условиях изменяющейся гелиогеофизической обстановки, продолжающегося снижения геомагнитной индукции и увеличения доступа солнечно-галактических корпускулярных потоков в биосферу.

параметры	Пр > 1 мВ	Пр > 10 мВ	Пр > 100 мВ	Эл > 0,6 мВ	Эл > 2 мВ	He	Рентгеновские лучи
систолическое давление	0,23	0,23	0,31	0,23	0	0,23	- 0,25
диастолическое давление	0,53	0,53	0,54*	0,53	0	0,53	- 0,26
Я	- 0,03	- 0,03	- 0,08	- 0,03	0	- 0,03	- 0,15
частота сердцебиения	0,13	0,13	0,29	0,13	0	0,13	- 0,28
тон	- 0,44	- 0,44	- 0,33	- 0,44	0	- 0,44	0,02

параметры	Пр > 1 мВ	Пр > 10 мВ	Пр > 100 мВ	Эл > 0,6 мВ	Эл > 2 мВ	He	Рентгеновские лучи
систолическое давление	- 0,16	- 0,16	- 0,12	- 0,16	0,34	- 0,06	0,17
диастолическое давление	- 0,39	- 0,39	- 0,64*	- 0,39	- 0,13	- 0,11	- 0,32
Я	0,53	0,53	0,29	0,53	- 0,30	0,34	0,52
частота сердцебиения	0,42	0,42	- 0,03	0,42	- 0,34	0,32	0,31
тон	0,60*	0,60*	0,27	0,60*	- 0,45	0,14	0,29

Таблица 5: Корреляционные зависимости физиологических показателей от пятиминутных значений электронов, протонов, нейронов и рентгена) в 3-м (1) и 4-м (2) замерах.(по данным Трофимова А.В., 2012)

Примечание: **-Значение коэффициента корреляции Пр-протоны, Эл-

электроны, Ne-нейтроны, Рентгеновское излучение Солнца.

Цитата:Трофимов A (2016) Научная декларация об актуальности глобальных геоэкологических систем для выживания человечества в эпоху космопланетарных и климатических изменений. Int | Earth Environ Sci 1: 119. doi:http://dx.doi.org/10.15344/ijees/2016/119

Страница 5 из 5

Обработка питьевой воды в ослабленном геомагнитном поле, по нашему мнению, приводит к таким изменениям ее нанокластерной структуры, энергоинформационной емкости и биокаталитической активности, которые обеспечивают гелиопротекторное действие по отношению к человеку на супрамолекулярном, клеточном, системном и организменном уровнях.

Конкурирующие интересы

Авторы заявляют, что у них нет конкурирующих интересов.

Рекомендации

- 1. Кузнецов В.В. (1999) Модель движения виртуального геомагнитного полюса при разворотах. ФизПлан Интер 115: 173-79.
- 2. Мандеа М., Белдер Э., Ле Муэль Дж. (2000) Геомагнитный рывок конца 20-го века. ЭПСЛ 183: 369–373.
- 3. Шаар Р., Бен-Йосеф Э., Рон X (2011) Интенсивность геомагнитного поля: насколько высокой она может быть? Как быстро это может измениться? Ограждения из медного шлака железного века. Earth Planet Sci Lett 301: 297–306.
- 4. Кузнецова Н.Д., Кузнецов В.В. (2012) Влияние космического излучения и вековых вариаций геомагнитного поля на эволюцию жизни. Вестник Свнц Дво Бег 2: 11-18.
- 5. Картер Б., Зельманов А.Л., Идлис Г.И. (1986) Проблема поиска жизни во Вселенной. Москва.
- 6. Гуськова Е.Г., Распопов О.М., Дергачев В.А. (2007) Проявление отклонения геомагнитного поля Гетеборга в донных отложениях Баренцева моря. Геомагнит Астрон 47: 781-786.
- 7. Харрсон К.Г. (1968)Эволюционные процессы и инверсии магнитного поля Земли. Природа 217: 46-47.
- 8. Робертс А. (2008) Геомагнитные экскурсии: знает и не знает. Geoph Res Lett 35: 17307.
- 9. Ферк А., Леонарди Р. (2009) Экскурсия геомагнитного поля Лашампа, зафиксированная в исландских лавах. Фи Земля Планета Интер 107: 19-30.
- 10. Амвросий С.Х. (1998)Популяция человека позднего плейстоцена. Узкие места, вулканическая зима и дифференциация современного человека. Дж Хум Эвол 34: 673-651
- Казначеев В.П., Дмитриев А.Н., Мингазов И.Ф. (2007) Цивилизация в условиях повышения энергоемкости природных процессов Земли. Проблема космоносферного будущего Новосибирск: Наука.
- Трофимов А.В. (2008) Моделирование биотропных эффектов вековых геофизических изменений: Материалы X Международной научной конференции. Проблема J Open Sys Evolut 10: 139-148.
- Грин Р.Э., Маласпинас А.С., Краузе Дж. (2008)Полная последовательность митохондриального генома неандертальца, определенная с помощью высокопроизводительного секвенирования. Ячейка 134: 416–426.
- 14. Леонард В.Р., Снодрасс Дж.Дж., Робертсон М.Л. (2007) Влияние на эволюцию мозга человека питания и метаболизма. Анна Преподобный Нутр 27: 311-327.
- 15. Стедман Х.Х., Козяк Б.В., Нельсон А. (2004). Мутация гена миозина коррелирует с анатомическими изменениями в человеческом происхождении. Природа 428: 415-418.
- Трофимов А.В., Дружинин Г.И. (2011) Информационная голограмма: теоретические и практические перспективы экологии и медицины XXI века. Красноярск: Поликор.
- Трофимов A (2012) Пренатальный гелиоимпринтинг: Новые профилактические технологии.
 Саарбрюккен; Па6 Palmarium Aca.
- Максимов В.Н., Устинов С.Н., Девицин Д.В. (2002) Полиморфизм гена дофаминового рецептора D4 и магниточувствительность организма человека. Вестник МНИИКА 9: 106-110.
- Казначеев В.П., Трофимов А.В. (2008) Размышления о жизни и разуме на планете Земля. Проблемы космопланетарной антропоэкологии. Вассербург: Европейская академия наук будущего.
- 20. Трофимов А.В., Севостьянова Е.В. (2013) Гелиогеофизические аспекты реологии: новые технологии и горизонты профилактической медицины. В: Дурайрадж Р., Ред. Реология. Новые концепции, приложения и методы: Риека: INTECH: 39-56.

 Трофимов А, Хирч М (2012) К эволюции влияния полярных электроджетов на физиологические параметры человека в фонических условиях при использовании немедицинских гелиомагнитных защитных средств: Материалы 15-го Международного конгресса по циркумполярному здоровью.

Int J Earth Environ Sci